

Welcome to djoser’s documentation!

Basics

	Introduction

	Getting started
	Available endpoints

	Supported authentication backends

	Supported Python versions

	Supported Django versions

	Supported Django Rest Framework versions

	Installation

	Configuration

	Sample usage

	Authentication Backends
	Token Based Authentication

	JSON Web Token Authentication

Settings & API

	Settings
	PASSWORD_RESET_CONFIRM_URL

	SEND_ACTIVATION_EMAIL

	SEND_CONFIRMATION_EMAIL

	ACTIVATION_URL

	SET_USERNAME_RETYPE

	SET_PASSWORD_RETYPE

	PASSWORD_RESET_CONFIRM_RETYPE

	LOGOUT_ON_PASSWORD_CHANGE

	USER_EMAIL_FIELD_NAME

	PASSWORD_RESET_SHOW_EMAIL_NOT_FOUND

	TOKEN_MODEL

	SERIALIZERS

	EMAIL

	SOCIAL_AUTH_TOKEN_STRATEGY

	SOCIAL_AUTH_ALLOWED_REDIRECT_URIS

	Base Endpoints
	User

	User Create

	User Delete

	User Activate

	Set Username

	Set Password

	Reset Password

	Reset Password Confirmation

	Token Endpoints
	Token Create

	Token Destroy

	JWT Endpoints
	JWT Create

	JWT Refresh

	JWT Verify

	Social Endpoints
	Provider Auth

Usage

	Migration Guide

	Emails

	Adjustment

	Examples

Indices and tables

	Index

	Search Page

Introduction

REST implementation of Django [https://www.djangoproject.com/] authentication
system. djoser library provides a set of Django Rest Framework [http://www.django-rest-framework.org/]
views to handle basic actions such as registration, login, logout, password
reset and account activation. It works with custom user model [https://docs.djangoproject.com/en/dev/topics/auth/customizing/].

Instead of reusing Django code (e.g. PasswordResetForm), we reimplemented
few things to fit better into Single Page App [https://en.wikipedia.org/wiki/Single-page_application]
architecture.

Developed by SUNSCRAPERS [http://sunscrapers.com/] with passion & patience.

Getting started

Available endpoints

	/users/

	/users/me/

	/users/confirm/

	/users/change_username/

	/password/

	/password/reset/

	/password/reset/confirm/

	/token/login/ (Token Based Authentication)

	/token/logout/ (Token Based Authentication)

	/jwt/create/ (JSON Web Token Authentication)

	/jwt/refresh/ (JSON Web Token Authentication)

	/jwt/verify/ (JSON Web Token Authentication)

Supported authentication backends

	Token based authentication from DRF [http://www.django-rest-framework.org/api-guide/authentication#tokenauthentication]

	JSON Web Token authentication from django-rest-framework-jwt [https://github.com/GetBlimp/django-rest-framework-jwt]

Supported Python versions

	Python 2.7

	Python 3.4

	Python 3.5

	Python 3.6

Supported Django versions

	Django 1.11

	Django 2.0

Supported Django Rest Framework versions

	Django Rest Framework 3.7

Installation

$ pip install -U djoser

If you are going to use JWT authentication, you will also need to install
djangorestframework-jwt [https://github.com/GetBlimp/django-rest-framework-jwt]
with:

$ pip install -U djangorestframework-jwt

Finally if you are going to use third party based authentication e.g. facebook,
you will need to install social-auth-app-django [https://github.com/python-social-auth/social-app-django]
with:

$ pip install -U social-auth-app-django

Configuration

Configure INSTALLED_APPS:

INSTALLED_APPS = (
 'django.contrib.auth',
 (...),
 'rest_framework',
 'djoser',
 (...),
)

Configure urls.py:

urlpatterns = [
 (...),
 url(r'^auth/', include('djoser.urls')),
]

HTTP Basic Auth strategy is assumed by default as Django Rest Framework does it.
We strongly discourage and do not provide any explicit support for basic auth.
You should customize your authentication backend as described in
Authentication Backends.

In case of third party based authentication
PSA backend docs [https://python-social-auth.readthedocs.io/en/latest/backends/index.html#social-backends]
will be a great reference to configure given provider.

Sample usage

We provide a standalone test app for you to start easily, see how everything works with basic settings.
It might be useful before integrating djoser into your backend application.

In this extremely short tutorial we are going to mimic the simplest flow:
register user, log in and log out. We will also check resource access on each consecutive step.
Let’s go!

Clone repository and install djoser to your virtualenv:

$ git clone git@github.com:sunscrapers/djoser.git
$ cd djoser
$ pip install -e .

Go to the testproject directory, migrate the database and start the development server:

$ cd testproject
$./manage.py migrate
$./manage.py runserver 8088

Register a new user:

$ curl -X POST http://127.0.0.1:8088/auth/users/ --data 'username=djoser&password=djoser'
{"email": "", "username": "djoser", "id":1}

So far, so good. We have just created a new user using REST API.

Let’s access user’s details:

$ curl -X GET http://127.0.0.1:8088/auth/users/me/
{"detail": "Authentication credentials were not provided."}

As we can see, we cannot access user profile without logging in. Pretty obvious.

Let’s log in:

curl -X POST http://127.0.0.1:8088/auth/token/login/ --data 'username=djoser&password=djoser'
{"auth_token": "b704c9fc3655635646356ac2950269f352ea1139"}

We have just obtained an authorization token that we may use later in order to retrieve specific resources.

Let’s access user’s details again:

$ curl -X GET http://127.0.0.1:8088/auth/users/me/
{"detail": "Authentication credentials were not provided."}

Access is still forbidden but let’s offer the token we obtained:

$ curl -X GET http://127.0.0.1:8088/auth/users/me/ -H 'Authorization: Token b704c9fc3655635646356ac2950269f352ea1139'
{"email": "", "username": "djoser", "id": 1}

Yay, it works!

Now let’s log out:

curl -X POST http://127.0.0.1:8088/auth/token/logout/ -H 'Authorization: Token b704c9fc3655635646356ac2950269f352ea1139'

And try access user profile again:

$ curl -X GET http://127.0.0.1:8088/auth/users/me/ -H 'Authorization: Token b704c9fc3655635646356ac2950269f352ea1139'
{"detail": "Invalid token"}

As we can see, user has been logged out successfully and the proper token has been removed.

Authentication Backends

Note

Both Token Based and JWT Authentication can coexist at same time.
Simply, follow instructions for both authentication methods and it should work.

Token Based Authentication

Add 'rest_framework.authtoken' to INSTALLED_APPS:

INSTALLED_APPS = [
 'django.contrib.auth',
 (...),
 'rest_framework',
 'rest_framework.authtoken',
 'djoser',
 (...),
]

Configure urls.py. Pay attention to djoser.url.authtoken module path:

urlpatterns = [
 (...),
 url(r'^auth/', include('djoser.urls')),
 url(r'^auth/', include('djoser.urls.authtoken')),
]

Add rest_framework.authentication.TokenAuthentication to Django REST Framework
authentication strategies tuple:

REST_FRAMEWORK = {
 'DEFAULT_AUTHENTICATION_CLASSES': (
 'rest_framework.authentication.TokenAuthentication',
 (...)
),
}

Run migrations - this step will create tables for auth and authtoken apps:

$./manage.py migrate

JSON Web Token Authentication

Configure urls.py with djoser.url.jwt module path:

urlpatterns = [
 (...),
 url(r'^auth/', include('djoser.urls')),
 url(r'^auth/', include('djoser.urls.jwt')),
]

Add rest_framework_jwt.authentication.JSONWebTokenAuthentication to
Django REST Framework authentication strategies tuple:

REST_FRAMEWORK = {
 'DEFAULT_AUTHENTICATION_CLASSES': (
 'rest_framework_jwt.authentication.JSONWebTokenAuthentication',
 (...)
),
}

Settings

You may optionally provide DJOSER settings:

DJOSER = {
 'PASSWORD_RESET_CONFIRM_URL': '#/password/reset/confirm/{uid}/{token}',
 'ACTIVATION_URL': '#/activate/{uid}/{token}',
 'SEND_ACTIVATION_EMAIL': True,
 'SERIALIZERS': {},
}

PASSWORD_RESET_CONFIRM_URL

URL to your frontend password reset page. It should contain {uid} and
{token} placeholders, e.g. #/password-reset/{uid}/{token}.
You should pass uid and token to reset password confirmation endpoint.

Required: True

SEND_ACTIVATION_EMAIL

If True user will be required to click activation link sent in email after:

	creating an account via RegistrationView

	updating his email via UserView

Default: False

SEND_CONFIRMATION_EMAIL

If True, register or activation endpoint will send confirmation email to user.

Default: False

ACTIVATION_URL

URL to your frontend activation page. It should contain {uid} and {token}
placeholders, e.g. #/activate/{uid}/{token}. You should pass uid and
token to activation endpoint.

Required: True

SET_USERNAME_RETYPE

If True, you need to pass re_new_{{ User.USERNAME_FIELD }} to
/{{ User.USERNAME_FIELD }}/ endpoint, to validate username equality.

Default: False

SET_PASSWORD_RETYPE

If True, you need to pass re_new_password to /password/ endpoint, to
validate password equality.

Default: False

PASSWORD_RESET_CONFIRM_RETYPE

If True, you need to pass re_new_password to /password/reset/confirm/
endpoint in order to validate password equality.

Default: False

LOGOUT_ON_PASSWORD_CHANGE

If True, setting new password will logout the user.

Default: False

USER_EMAIL_FIELD_NAME

Determines which field in User model is used for email in versions of Django
before 1.11. In Django 1.11 and greater value of this setting is ignored and
value provided by User.get_email_field_name is used.
This setting will be dropped when Django 1.8 LTS goes EOL.

Default: 'email'

PASSWORD_RESET_SHOW_EMAIL_NOT_FOUND

If True, posting a non-existent email to /password/reset/ will return
a HTTP_400_BAD_REQUEST response with an EMAIL_NOT_FOUND error message
(‘User with given email does not exist.’).

If False (default), the /password/reset/ endpoint will always return
a HTTP_204_NO_CONTENT response.

Please note that setting this to True will expose information whether
an email is registered in the system.

Default: False

TOKEN_MODEL

Points to which token model should be used for authentication. In case if
only stateless tokens (e.g. JWT) are used in project it should be set to None.

Example: 'knox.models.AuthToken'
Default: 'rest_framework.authtoken.models.Token'

SERIALIZERS

Dictionary which maps djoser serializer names to paths to serializer classes.
This setting provides a way to easily override given serializer(s) - it’s is used
to update the defaults, so by providing, e.g. one key, all the others will stay default.

Examples

{
 'user': 'myapp.serializers.SpecialUserSerializer',
}

Default:

{
 'activation': 'djoser.serializers.ActivationSerializer',
 'password_reset': 'djoser.serializers.PasswordResetSerializer',
 'password_reset_confirm': 'djoser.serializers.PasswordResetConfirmSerializer',
 'password_reset_confirm_retype': 'djoser.serializers.PasswordResetConfirmRetypeSerializer',
 'set_password': 'djoser.serializers.SetPasswordSerializer',
 'set_password_retype': 'djoser.serializers.SetPasswordRetypeSerializer',
 'set_username': 'djoser.serializers.SetUsernameSerializer',
 'set_username_retype': 'djoser.serializers.SetUsernameRetypeSerializer',
 'user_create': 'djoser.serializers.UserCreateSerializer',
 'user_delete': 'djoser.serializers.UserDeleteSerializer',
 'user': 'djoser.serializers.UserSerializer',
 'token': 'djoser.serializers.TokenSerializer',
 'token_create': 'djoser.serializers.TokenCreateSerializer',
}

EMAIL

Dictionary which maps djoser email names to paths to email classes.
Same as in case of SERIALIZERS it allows partial override.

Examples

{
 'activation': 'myapp.email.AwesomeActivationEmail',
}

Default:

{
 'activation': 'djoser.email.ActivationEmail',
 'confirmation': 'djoser.email.ConfirmationEmail',
 'password_reset': 'djoser.email.PasswordResetEmail',
}

SOCIAL_AUTH_TOKEN_STRATEGY

String path to class responsible for token strategy used by social authentication.

Example: 'myapp.token.MyStrategy'
Default: 'djoser.social.token.jwt.TokenStrategy'

SOCIAL_AUTH_ALLOWED_REDIRECT_URIS

List of allowed redirect URIs for social authentication.

Example: ['https://auth.example.com']
Default: []

Base Endpoints

User

Use this endpoint to retrieve/update user.

Default URL: /users/me/
Backward-compatible URL: /me/

	Method

	Request

	Response

	GET

	–

	HTTP_200_OK

	{{ User.USERNAME_FIELD }}

	{{ User._meta.pk.name }}

	{{ User.REQUIRED_FIELDS }}

	PUT

	{{ User.REQUIRED_FIELDS }}

	HTTP_200_OK

	{{ User.USERNAME_FIELD }}

	{{ User._meta.pk.name }}

	{{ User.REQUIRED_FIELDS }}

User Create

Use this endpoint to register new user. Your user model manager should
implement create_user [https://docs.djangoproject.com/en/dev/ref/contrib/auth/#django.contrib.auth.models.UserManager.create_user]
method and have USERNAME_FIELD [https://docs.djangoproject.com/en/dev/topics/auth/customizing/#django.contrib.auth.models.CustomUser.USERNAME_FIELD]
and REQUIRED_FIELDS [https://docs.djangoproject.com/en/dev/topics/auth/customizing/#django.contrib.auth.models.CustomUser.REQUIRED_FIELDS]
fields.

Default URL: /users/
Backward-compatible URL: /users/create/

	Method

	Request

	Response

	POST

	
	{{ User.USERNAME_FIELD }}

	{{ User.REQUIRED_FIELDS }}

	password

	HTTP_201_CREATED

	{{ User.USERNAME_FIELD }}

	{{ User._meta.pk.name }}

	{{ User.REQUIRED_FIELDS }}

User Delete

Use this endpoint to delete authenticated user. By default it will simply verify
password provided in current_password, delete the auth token if token
based authentication is used and invoke delete for a given User instance.
One of ways to customize the delete behavior is to override User.delete.

Default URL: /users/me/

	Method

	Request

	Response

	DELETE

	
	current_password

	HTTP_204_NO_CONTENT

HTTP_400_BAD_REQUEST

	current_password

Backward-compatible URL: /users/delete/

	Method

	Request

	Response

	POST

	
	current_password

	HTTP_204_NO_CONTENT

HTTP_400_BAD_REQUEST

	current_password

User Activate

Use this endpoint to activate user account. This endpoint is not a URL which
will be directly exposed to your users - you should provide site in your
frontend application (configured by ACTIVATION_URL) which will send POST
request to activate endpoint.

Default URL: /users/confirm/
Backward-compatible URL: /users/activate/

	Method

	Request

	Response

	POST

	
	uid

	token

	HTTP_204_NO_CONTENT

Set Username

Use this endpoint to change user username (USERNAME_FIELD).

Default URL: /users/change_username/
Backward-compatible URL: /{{ User.USERNAME_FIELD }}/

Note

re_new_{{ User.USERNAME_FIELD }} is only required if SET_USERNAME_RETYPE is True

	Method

	Request

	Response

	POST

	
	new_{{ User.USERNAME_FIELD }}

	re_new_{{ User.USERNAME_FIELD }}

	current_password

	HTTP_204_NO_CONTENT

Set Password

Use this endpoint to change user password.

Default URL: /password/

Note

re_new_password is only required if SET_PASSWORD_RETYPE is True

	Method

	Request

	Response

	POST

	
	new_password

	re_new_password

	current_password

	HTTP_204_NO_CONTENT

Reset Password

Use this endpoint to send email to user with password reset link. You have to
setup PASSWORD_RESET_CONFIRM_URL.

Default URL: /password/reset/

Note

HTTP_204_NO_CONTENT if PASSWORD_RESET_SHOW_EMAIL_NOT_FOUND is False

Otherwise and if email does not exist in database HTTP_400_BAD_REQUEST

	Method

	Request

	Response

	POST

	email

	
	HTTP_204_NO_CONTENT

	HTTP_400_BAD_REQUEST

Reset Password Confirmation

Use this endpoint to finish reset password process. This endpoint is not a URL
which will be directly exposed to your users - you should provide site in your
frontend application (configured by PASSWORD_RESET_CONFIRM_URL) which
will send POST request to reset password confirmation endpoint.

Default URL: /password/reset/confirm/

Note

re_new_password is only required if PASSWORD_RESET_CONFIRM_RETYPE is True

	Method

	Request

	Response

	POST

	
	uid

	token

	new_password

	re_new_password

	HTTP_204_NO_CONTENT

Token Endpoints

Token Create

Use this endpoint to obtain user
authentication token [http://www.django-rest-framework.org/api-guide/authentication#tokenauthentication].
This endpoint is available only if you are using token based authentication.

Default URL: /token/login/
Backward-compatible URL: /token/create/

	Method

	Request

	Response

	POST

	
	{{ User.USERNAME_FIELD }}

	password

	HTTP_200_OK

	auth_token

Token Destroy

Use this endpoint to logout user (remove user authentication token).
This endpoint is available only if you are using token based authentication.

Default URL: /token/logout/
Backward-compatible URL: /token/destroy/

	Method

	Request

	Response

	POST

	–

	HTTP_204_NO_CONTENT

JWT Endpoints

JWT Create

Use this endpoint to obtain JWT.

Default URL: /jwt/create/

	Method

	Request

	Response

	POST

	
	token

	HTTP_200_OK

	token

HTTP_400_BAD_REQUEST

	non_field_errors

JWT Refresh

Use this endpoint to refresh JWT.

Default URL: /jwt/refresh/

	Method

	Request

	Response

	POST

	
	token

	HTTP_200_OK

	token

HTTP_400_BAD_REQUEST

	non_field_errors

JWT Verify

Use this endpoint to verify JWT.

Default URL: /jwt/verify/

	Method

	Request

	Response

	POST

	
	token

	HTTP_200_OK

	token

HTTP_400_BAD_REQUEST

	non_field_errors

Social Endpoints

Warning

This API is in beta quality - backward compatibility is not guaranteed in
future versions and you may come across bugs.

Provider Auth

Use this endpoint to obtain authorization URL for a given provider with the
GET method or to obtain authentication token with POST method. List of providers
is available at
social backend docs [https://python-social-auth.readthedocs.io/en/latest/backends/index.html#social-backends].

Default URL: /o/{{ provider }}/

Note

	redirect_uri is provided via GET parameters - not JSON

	state parameter isn’t always required e.g. in case of OpenID backends

	Method

	Request

	Response

	GET

	
	redirect_uri

	HTTP_200_OK

	authorization_url

HTTP_400_BAD_REQUEST

	POST

	
	code

	state

	HTTP_201_CREATED

	token

HTTP_400_BAD_REQUEST

	non_field_errors

Migration Guide

Migrating from 1.1 to 1.2

There is no urgent need to change anything as backward compatibility is retained.
That being said we ask you to change usage from old endpoints to new ones
for the warm fuzzy feeling of being more RESTful :)

Migrating from 0.x to 1.0

The stable release has introduced a number of backward incompatible changes and
purpose of this guide is to allow developer to quickly adapt a given project.

Removal of UserEmailFactoryBase and its subclasses

As mentioned in Emails page [http://djoser.readthedocs.io/en/latest/emails.html]
since 1.0 email support has been removed from Djoser and it is advised to
use django-templated-mail [https://github.com/sunscrapers/django-templated-mail]
for use cases which were previously handled by djoser email support.
You can find out more about it in the
project documentation [http://django-templated-mail.readthedocs.io/en/latest/].
Keep in mind that DOMAIN and SITE_NAME settings have also been moved to
django-templated-mail as described in
settings page [http://django-templated-mail.readthedocs.io/en/latest/settings.html].

Base URLs are no longer included with other URLs

Previously djoser.urls.base were bundled with djoser.urls.authtoken,
however in some cases developer might not need them and therefore if
base URLs are needed it is now necessary to explicitly include them, e.g.:

urlpatterns = [
 (...),
 url(r'^auth/', include('djoser.urls')),
 url(r'^auth/', include('djoser.urls.authtoken')),
]

Dropped support for Django < 1.10

Support for Django 1.8 and 1.9 has been dropped in Django REST Framework 3.7
and hence there was no reason to keep it in djoser. It is recommended to upgrade
to Django 1.11, since 1.10 will EOL in December 2017.
Django Deprecation Timeline [https://docs.djangoproject.com/en/1.11/internals/deprecation/]
and Django Release Notes [https://docs.djangoproject.com/en/1.11/releases/]
are very helpful in the process.

Some View class names and URLs has been updated

Also please note that for sake of consistency all URLs now end with a trailing slash. The trailing slash is optional to ensure compatibility with frontend tools that strip the trailing slash (eg Google’s Chrome browser and Angular framework).

View class names:

	RegistrationView has been renamed to UserCreateView

	LoginView has been renamed to TokenCreateView

	LogoutView has been renamed to TokenDestroyView

Base URLs:

	register/ has been renamed to users/create/

	register URL name has been renamed to user-create

	activate/ has been renamed to users/activate/

	activate URL name has been renamed to user-activate

Token Based Authentication URLs:

	login/ has been renamed to token/create/

	login URL name has been renamed to token-create

	logout/ has been renamed to token/destroy/

	logout URL name has been renamed to token-destroy

Emails

Explicit email support has been removed from djoser in 1.0.0.
It didn’t make sense to handle such responsibility in a package, which should
simply provide an implementation of common authentication-related REST endpoints.

Email support is now handled with the django-templated-mail [https://github.com/sunscrapers/django-templated-mail]
package.

Email classes can be overridden using EMAIL setting [http://djoser.readthedocs.io/en/latest/settings.html#email]

Adjustment

If you need to customize any serializer behaviour you can use
the DJOSER['SERIALIZERS'] setting to use your own serializer classes in the built-in views.
Or if you need to completely change the default djoser behaviour,
you can always override djoser views with your own custom ones.

Define custom urls instead of reusing djoser.urls:

urlpatterns = patterns('',
 (...),
 url(r'^register/$', views.CustomRegistrationView.as_view()),
)

Define custom view/serializer (inherit from one of djoser class) and override necessary method/field:

class CustomRegistrationView(djoser.views.RegistrationView):

 def send_activation_email(self, *args, **kwargs):
 your_custom_email_sender(*args, **kwargs)

You could check djoser API in source code:

	djoser.views [https://github.com/sunscrapers/djoser/blob/master/djoser/views.py]

	djoser.serializers [https://github.com/sunscrapers/djoser/blob/master/djoser/serializers.py]

Examples

Early detecting invalid password reset tokens

When there is need to check if password reset token is still valid without
actually resetting the password it is possible to approach the problem like so:

from django.contrib.auth.tokens import default_token_generator
from rest_framework import generics, permissions, status
from rest_framework.response import Response

from djoser import serializers

class PasswordTokenCheckView(generics.CreateAPIView):
 permission_classes = (
 permissions.AllowAny,
)
 token_generator = default_token_generator
 serializer_class = serializers.UidAndTokenSerializer

 def post(self, request, *args, **kwargs):
 serializer = self.get_serializer(data=request.data)
 serializer.is_valid(raise_exception=True)
 headers = self.get_success_headers(serializer.data)
 return Response(serializer.data, status=status.HTTP_200_OK, headers=headers)

Index

 _static/comment-bright.png

_static/ajax-loader.gif

_static/comment-close.png

_static/comment.png

_static/down-pressed.png

nav.xhtml

 Table of Contents

 		
 Welcome to djoser’s documentation!

 		
 Introduction

 		
 Getting started

 		
 Available endpoints

 		
 Supported authentication backends

 		
 Supported Python versions

 		
 Supported Django versions

 		
 Supported Django Rest Framework versions

 		
 Installation

 		
 Configuration

 		
 Sample usage

 		
 Authentication Backends

 		
 Token Based Authentication

 		
 JSON Web Token Authentication

 		
 Settings

 		
 PASSWORD_RESET_CONFIRM_URL

 		
 SEND_ACTIVATION_EMAIL

 		
 SEND_CONFIRMATION_EMAIL

 		
 ACTIVATION_URL

 		
 SET_USERNAME_RETYPE

 		
 SET_PASSWORD_RETYPE

 		
 PASSWORD_RESET_CONFIRM_RETYPE

 		
 LOGOUT_ON_PASSWORD_CHANGE

 		
 USER_EMAIL_FIELD_NAME

 		
 PASSWORD_RESET_SHOW_EMAIL_NOT_FOUND

 		
 TOKEN_MODEL

 		
 SERIALIZERS

 		
 EMAIL

 		
 SOCIAL_AUTH_TOKEN_STRATEGY

 		
 SOCIAL_AUTH_ALLOWED_REDIRECT_URIS

 		
 Base Endpoints

 		
 User

 		
 User Create

 		
 User Delete

 		
 User Activate

 		
 Set Username

 		
 Set Password

 		
 Reset Password

 		
 Reset Password Confirmation

 		
 Token Endpoints

 		
 Token Create

 		
 Token Destroy

 		
 JWT Endpoints

 		
 JWT Create

 		
 JWT Refresh

 		
 JWT Verify

 		
 Social Endpoints

 		
 Provider Auth

 		
 Migration Guide

 		
 Migrating from 1.1 to 1.2

 		
 Migrating from 0.x to 1.0

 		
 Removal of UserEmailFactoryBase and its subclasses

 		
 Base URLs are no longer included with other URLs

 		
 Dropped support for Django < 1.10

 		
 Some View class names and URLs has been updated

 		
 Emails

 		
 Adjustment

 		
 Examples

 		
 Early detecting invalid password reset tokens

_static/file.png

_static/minus.png

_static/down.png

_static/up-pressed.png

_static/up.png

_static/plus.png

